The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimaeric limbs.

نویسندگان

  • L G Robson
  • S M Hughes
چکیده

Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo after implantation and their state of differentiation determined with species-specific antibodies to MyoD and myosin heavy chain. When mouse myogenic cells are implanted at the growing tip of early stage 21 limbs MyoD expression is suppressed and little differentiation of the mouse cells is detected initially. At later stages ectopically implanted mouse cells come to lie within muscle masses, re-express MyoD and differentiate in parallel with differentiating chick myoblasts. However, if mouse cells are implanted either proximally at stage 21 or into the limb tip at stage 24, situations in which mouse cells encounter endogenous differentiating chick myoblasts earlier, MyoD suppression is not detected and a higher proportion of mouse cells differentiate. Mouse cells that remain distal to endogenous differentiating myogenic cells are more likely to remain undifferentiated than myoblasts that lie within differentiated chick muscle. Undifferentiated distal mouse cells are still capable of differentiating if explanted in vitro, suggesting that myoblast differentiation is inhibited in vivo. In vitro, MyoD is suppressed in primary mouse myoblasts by the addition of FGF2 and FGF4 to the culture media. Taken together, our data suggest that the inhibition of myogenic differentiation in the distal limb involves MyoD suppression in myoblasts, possibly through an FGF-like activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distal limb environment regulates MyoD accumulation and muscle differentiation in mouse-chick chimæric limbs

Differentiation of muscle and cartilage within developing vertebrate limbs occurs in a proximodistal progression. To investigate the cues responsible for regulating muscle pattern, mouse myoblasts were implanted into early chick wings prior to endogenous chick muscle differentiation. Fetal myogenic cells originating from transgenic mice carrying a lacZ reporter were readily detected in vivo aft...

متن کامل

Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis.

The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of S...

متن کامل

Effects of insulin like growth factors on early embryonic chick limb myogenesis

Limb muscles derive from pax3 expressing precursor cells that migrate from the hypaxial somite into the developing limb bud. Once there they begin to differentiate and express muscle determination genes such as MyoD. This process is regulated by a combination of inductive or inhibitory signals including Fgf18, retinoic acid, HGF, Notch and IGFs. IGFs are well known to affect late stages of musc...

متن کامل

Ectopic Myf5 or MyoD prevents the neuronal differentiation program in addition to inducing skeletal muscle differentiation, in the chick neural tube.

Forced expression of the bHLH myogenic factors, Myf5 and MyoD, in various mammalian cell lines induces the full program of myogenic differentiation. However, this property has not been extensively explored in vivo. We have taken advantage of the chick model to investigate the effect of electroporation of the mouse Myf5 and MyoD genes in the embryonic neural tube. We found that misexpression of ...

متن کامل

Local signals in the chick limb bud can override myoblast lineage commitment: induction of slow myosin heavy chain in fast myoblasts

Patterning of fast and slow muscle fibres in limbs is regulated by signals from non-muscle cells. Myoblast lineage has, however, also been implicated in fibre type patterning. Here we test a founder cell hypothesis for the role of myoblast lineage, by implanting characterized fast and slow mouse myoblast clones into chick limb buds. In culture, late foetal mouse myoblast clones are committed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 122 12  شماره 

صفحات  -

تاریخ انتشار 1996